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Abstract
In this project, we formulate the Kalman-Bucy filter for linear,
continuous conformable control systems corrupted by white
noise. Here, we use the system first introduced by Khalil, et
al. We obtain a state transition matrix via a Peano-Baker
expansion that allows us to calculate our error propagation
through a Riccati equation. In addition, we show the duality
between the conformable Kalman filter and its associated
conformable linear quadratic regulator (CLQR) problem is
preserved. Finally, we provide numerical simulations for
relevant applications.

Definition (Conformable Derivative)
Let f : [0,∞)→ R and let α ∈ (0, 1]. Then the conformable derivative of
order α of f at t is defined by

fα(t) :=

 lim
θ→0

f (t + θt1−α)− f (t)
θ

, t > 0

lim
s→0+

f (α)(s), t = 0,

provided that the limit exists.

Properties
Let α ∈ (0, 1], f, g be α−differentiable functions for t > 0, and a, b ∈ R.
Then

(af + bg)(α)(t) = af (t)(α) + bg(t)(α),

(tb)(α) = btb−α,

(b)(α) = 0,
(fg)(α)(t) = f (t)(α)g(t) + f (t)g(t)(α),(

f
g

)(α)
(t) = g(t)f (α)(t)−f (t)g(α)(t)

[g(t)]2 , and

if f is differentiable, then f (α)(t) = t1−αf ′(t).

Definition (Conformable Integral)

Ia
α(f )(t) =

∫ t

a

f (x)
x1−αdx, where the integral is the usual Riemann integral

and α ∈ (0, 1].

Peano-Baker Series for Conformable Systems
The state transition matrix is given by

ΦA(t, t0) = I +
∫ t

t0

A(τ1)
τ1−α
1

dτ1 +
∫ t

t0

A(τ1)
τ1−α
1

∫ τ1

t0

A(τ2)
τ1−α
2

dτ2dτ1 + · · ·

+
∫ t

t0

A(τ1)
τ1−α
1

∫ τ1

t0

A(τ2)
τ1−α
2

. . .

∫ τk−1

t0

A(τk)
τ1−α
k

dτkdτk−1 · · · dτ1 + · · · ,

where Φ(·, t0) satisfies

x(α)(t) = A(t)x(t), x(t0) = x0.

Properties of Peano-Baker Expansion
ΦA(t, t0)ΦA(t0, t1) = ΦA(t, t1)
ΦA(t, t) = I

Φ(·, ·) is invertible

Φ(α)
A (t, t0) = A(t)ΦA(t, t0)

Stochastic System
Consider the system

x(α)(t) = A(t)x(t) + B(t)u(t) + Gw(t), x(t0) = x0
y(t) = C(t)x(t) + v(t)

where

x ∈ Rn is the state,

u ∈ Rm is the deterministic control,

y ∈ Rp is the measurement,

w ∈ Rl is the process noise, and

v ∈ Rp is the measurement noise.

The Conformable Kalman Filter (CKF)

System: x(α)(t) = A(t)x(t) + B(t)u(t) + Gw(t)
Measurement: y(t) = C(t)x(t) + v(t)

Assumptions: x0 ∼ (x̄0, P0), w ∼ (0, Qδ(t− s)), v ∼ (0, Rδ(t− s)), which are mutually
uncorrelated, R > 0

Initialization

Initial Estimate: x̂(t0) = x̄0
Error Covariance: P (t0) = E[(x0 − x̂0)(x0 − x̂0)T ] = P0

Estimate Update:

x̂(α)(t) = A(t)x̂(t) + B(t)u(t) + K(t)[y(t)− C(t)x̂(t)]

Kalman Gain: K(t) = P (t)CT (t)(R−1)

Error Covariance Update:

P (α)(t) = A(t)P (t) + P (t)AT (t)− P (t)C(t)TR−1C(t)P (t) + GQGT

CLQR vs CKF
When comparing Riccati equations,

CLQR :− Sα = AT S + SA− SBW−1BT S + Q

CKF : P α = AP + PAT − PCT R−1CP + GQGT ,

we see the duality property has been preserved. Below is a comparison

of matrix weights.

CLQR CKF

AT A
S P

B CT

W−1 R−1

Q GQGT

By the separability principle, we obtain[
x
x̃

]α

(t) =
[
A−BL(t) BL(t)

0 A−K(t)C

] [
x
x̃

]
(t),

where K and L are the gains of the CKF and CLQR respectively.

CKFAlgorithm
procedure CKF( n ∈ N, dt ∈ (0,∞), α ∈ (0, 1] )
Objective Function: x̂i ≈ xi such that Pi is bounded

Initialize Pn, xn, x̂n, wn, and vn as arrays of length n

Initialize P1, x1, x̂1, w1, and v1
Initialize A, B, C , G, Q, and R
factor ← dtα ÷ α
for i← 1 to n do

ui← A vector u ∈ Rm depicting the deterministic control

wi← A vector w ∈ Rl depicting the process noise

vi← A vector v ∈ Rp depicting the measurement noise

xi+1← xi + factor × ξ(i, xi)
yi← Cxi + vi
Ki← PiC

T R−1

x̂i+1← x̂i + factor × ξ(i, x̂i)
Pi+1← Pi + factor × ξ(i, Pi)

end for

end procedure

Linear Time Invariant (LTI)
Consider the stochastic oscillator

x(α)(t) =
[

0 1
−0.64 −0.25

]
x(t) +

[
0
1

]
w(t), x(0) =

[
1
1

]
y(t) =

[
1 0

]
x(t) + v(t)

where Q = 3, R = 2, and P (0) =
[
2 0
0 3

]
. Here, we use n = 200 iterations.

Case 1: α = 1 and h = 0.1

Case 2: α = 0.67 and h = 0.01

Case 3: α = 0.34 and h = 0.00001

Linear Time Variant (LTV)
Consider the stochastic system

x(α)(t) =
[

0 0.5
sin(0.1t) −1

]
x(t) +

[
0
1

]
w(t), x(0) =

[
1
1

]
y(t) =

[
1 0

]
x(t) + v(t)

where Q = 3, R = 2, and P (0) =
[
2 0
0 3

]
. Here, we use n = 200 iterations.

Case 1: α = 1 and h = 0.1

Case 2: α = 0.67 and h = 0.1

Case 3: α = 0.34 and h = 0.001
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Future Plans
Related work includes:

Steady-state results

Stability results through exponential weighting based on α

Gain scheduling based on α

Filter design with correlated noise

Conformable information filter and corresponding smoother

An extended conformable Kalman filter
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