

The Conformable Kalman Filter

Nathan Murarik ¹ Gino Rotellini ² Tatiana Sosnovsky ³ Nick Wintz 4

¹Department of Mathematics - Pennsylvania State University (nkm5423@psu.edu) ²Department of Mathematics - Pennsylvania Western University (rot9862@pennwest.edu) ³Department of Mathematics and Statistics- California State Polytechnic University, Pomona (tsosnovsky@cpp.edu)

⁴Department of Mathematics, Computer Science, and Information Technology - Lindenwood University (nwintz@lindenwood.edu)

Abstract

In this project, we formulate the Kalman-Bucy filter for linear, continuous conformable control systems corrupted by white noise. Here, we use the system first introduced by Khalil, et al. We obtain a state transition matrix via a Peano-Baker expansion that allows us to calculate our error propagation through a Riccati equation. In addition, we show the duality between the conformable Kalman filter and its associated conformable linear quadratic regulator (CLQR) problem is preserved. Finally, we provide numerical simulations for relevant applications.

Definition (Conformable Derivative)

Let $f:[0,\infty)\to\mathbb{R}$ and let $\alpha\in(0,1]$. Then the conformable derivative of order α of f at t is defined by

$$f^{\alpha}(t) := \begin{cases} \lim_{\theta \to 0} \frac{f(t + \theta t^{1-\alpha}) - f(t)}{\theta}, & t > 0 \\ \lim_{s \to 0^+} f^{(\alpha)}(s), & t = 0, \end{cases}$$

provided that the limit exists.

Properties

Let $\alpha \in (0,1]$, f,g be α —differentiable functions for t>0, and $a,b \in \mathbb{R}$. Then

- $(af + bg)^{(\alpha)}(t) = af(t)^{(\alpha)} + bg(t)^{(\alpha)}$,
- $(t^b)^{(\alpha)} = bt^{b-\alpha},$
- $(b)^{(\alpha)} = 0$,
- $(fg)^{(\alpha)}(t) = f(t)^{(\alpha)}g(t) + f(t)g(t)^{(\alpha)},$
- $\bullet \left(\frac{f}{g}\right)^{(\alpha)}(t) = \frac{g(t)f^{(\alpha)}(t) f(t)g^{(\alpha)}(t)}{[g(t)]^2}, \text{ and }$
- if f is differentiable, then $f^{(\alpha)}(t) = t^{1-\alpha}f'(t)$.

Definition (Conformable Integral)

 $I_{\alpha}^{a}(f)(t) = \int_{a}^{t} \frac{f(x)}{x^{1-\alpha}} dx$, where the integral is the usual Riemann integral and $\alpha \in (0,1]$

Peano-Baker Series for Conformable Systems

The state transition matrix is given by

$$\Phi_{A}(t,t_{0}) = I + \int_{t_{0}}^{t} \frac{A(\tau_{1})}{\tau_{1}^{1-\alpha}} d\tau_{1} + \int_{t_{0}}^{t} \frac{A(\tau_{1})}{\tau_{1}^{1-\alpha}} \int_{t_{0}}^{\tau_{1}} \frac{A(\tau_{2})}{\tau_{2}^{1-\alpha}} d\tau_{2} d\tau_{1} + \cdots
+ \int_{t_{0}}^{t} \frac{A(\tau_{1})}{\tau_{1}^{1-\alpha}} \int_{t_{0}}^{\tau_{1}} \frac{A(\tau_{2})}{\tau_{2}^{1-\alpha}} \dots \int_{t_{0}}^{\tau_{k-1}} \frac{A(\tau_{k})}{\tau_{k}^{1-\alpha}} d\tau_{k} d\tau_{k-1} \cdots d\tau_{1} + \cdots ,$$

where $\Phi(\cdot, t_0)$ satisfies

$$x^{(\alpha)}(t) = A(t)x(t), x(t_0) = x_0.$$

Properties of Peano-Baker Expansion

- $\Phi_A(t,t_0)\Phi_A(t_0,t_1) = \Phi_A(t,t_1)$
- $\bullet \Phi_A(t,t) = I$
- $\Phi(\cdot, \cdot)$ is invertible
- $\bullet \Phi_A^{(\alpha)}(t,t_0) = A(t)\Phi_A(t,t_0)$

Stochastic System

Consider the system

$$x^{(\alpha)}(t) = A(t)x(t) + B(t)u(t) + Gw(t), \ x(t_0) = x_0$$
$$y(t) = C(t)x(t) + v(t)$$

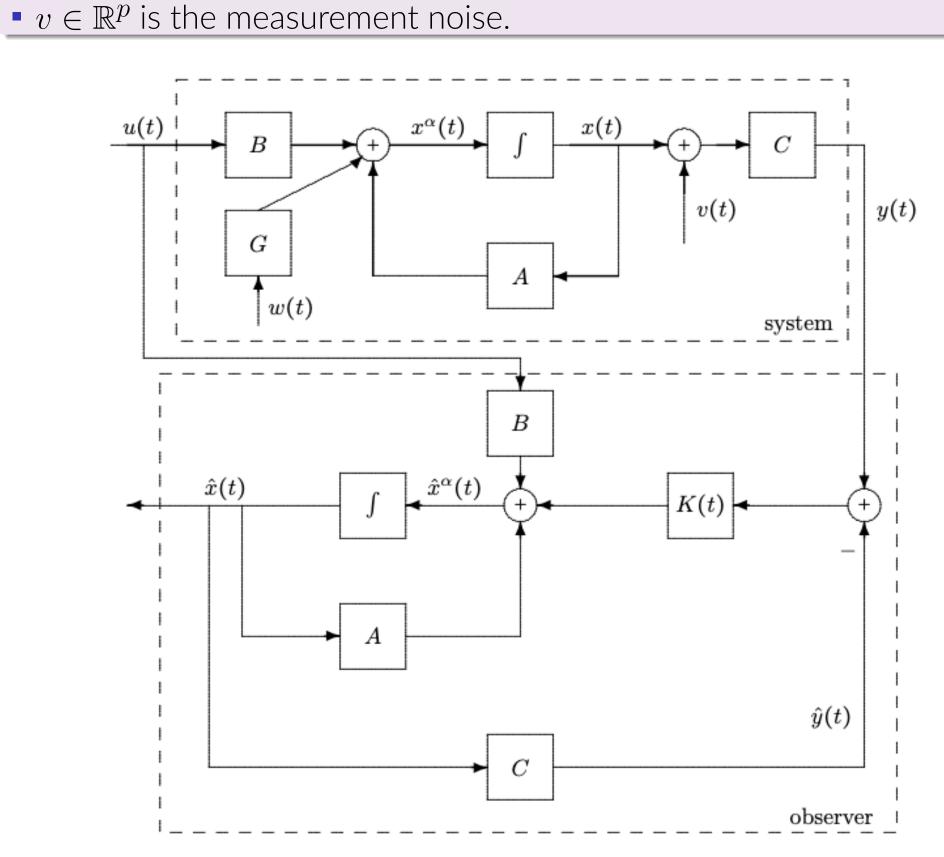
where

• $x \in \mathbb{R}^n$ is the state,

• $u \in \mathbb{R}^m$ is the deterministic control,

• $y \in \mathbb{R}^p$ is the measurement,

• $w \in \mathbb{R}^l$ is the process noise, and



The Conformable Kalman Filter (CKF)

System: $x^{(\alpha)}(t) = A(t)x(t) + B(t)u(t) + Gw(t)$ Measurement: y(t) = C(t)x(t) + v(t)

Assumptions: $x_0 \sim (\bar{x}_0, P_0)$, $w \sim (0, Q\delta(t-s))$, $v \sim (0, R\delta(t-s))$, which are mutually

uncorrelated, R > 0

Initialization Initial Estimate: $\hat{x}(t_0) = \bar{x}_0$

Error Covariance: $P(t_0) = \mathbb{E}[(x_0 - \hat{x}_0)(x_0 - \hat{x}_0)^T] = P_0$

Estimate Update:

 $\hat{x}^{(\alpha)}(t) = A(t)\hat{x}(t) + B(t)u(t) + K(t)[y(t) - C(t)\hat{x}(t)]$

Kalman Gain: $K(t) = P(t)C^{T}(t)(R^{-1})$

Error Covariance Update:

 $P^{(\alpha)}(t) = A(t)P(t) + P(t)A^{T}(t) - P(t)C(t)^{T}R^{-1}C(t)P(t) + GQG^{T}$

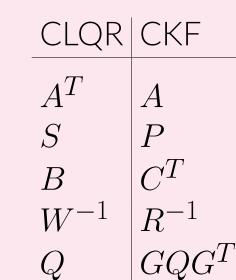
CLQR vs CKF

When comparing Riccati equations,

$$CLQR : -S^{\alpha} = A^{T}S + SA - SBW^{-1}B^{T}S + Q$$

$$CKF : P^{\alpha} = AP + PA^{T} - PC^{T}R^{-1}CP + GQG^{T},$$

we see the duality property has been preserved. Below is a comparison of matrix weights.



By the separability principle, we obtain

$$\begin{bmatrix} x \\ \tilde{x} \end{bmatrix}^{\alpha}(t) = \begin{bmatrix} A - BL(t) & BL(t) \\ 0 & A - K(t)C \end{bmatrix} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix} (t),$$

where K and L are the gains of the CKF and CLQR respectively.

CKF Algorithm

procedure CKF($n \in \mathbb{N}$, $dt \in (0, \infty)$, $\alpha \in (0, 1]$) Objective Function: $\hat{x}_i \approx x_i$ such that P_i is bounded

Initialize P_n , x_n , \hat{x}_n , w_n , and v_n as arrays of length n

Initialize P_1 , x_1 , \hat{x}_1 , w_1 , and v_1

Initialize A, B, C, G, Q, and R

 $factor \leftarrow dt^{\alpha} \div \alpha$ for $i \leftarrow 1$ to n do

 $u_i \leftarrow A \text{ vector } u \in \mathbb{R}^m \text{ depicting the deterministic control}$

 $w_i \leftarrow A \text{ vector } w \in \mathbb{R}^l \text{ depicting the process noise}$

 $v_i \leftarrow A \text{ vector } v \in \mathbb{R}^p \text{ depicting the measurement noise}$

 $x_{i+1} \leftarrow x_i + factor \times \xi(i, x_i)$

 $y_i \leftarrow Cx_i + v_i$

 $K_i \leftarrow P_i C^T R^{-1}$ $\hat{x}_{i+1} \leftarrow \hat{x}_i + factor \times \xi(i, \hat{x}_i)$

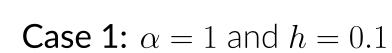
 $P_{i+1} \leftarrow P_i + factor \times \xi(i, P_i)$

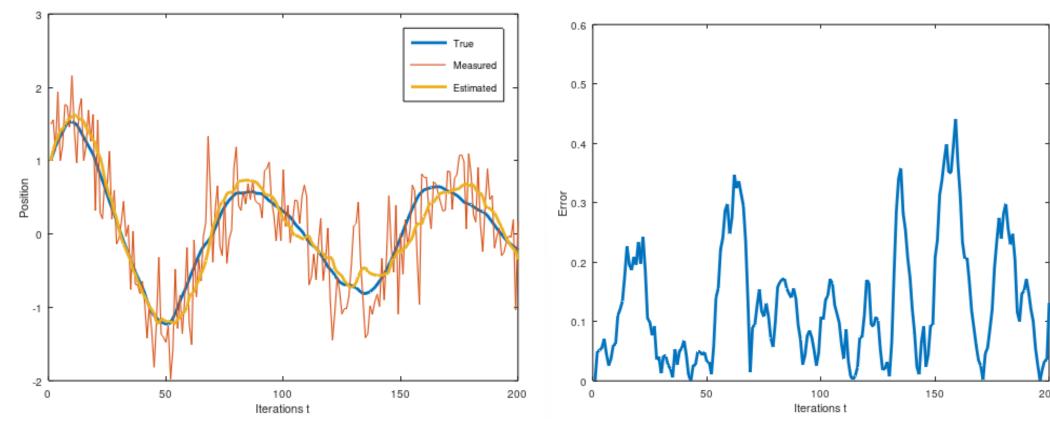
end for end procedure

Linear Time Invariant (LTI)

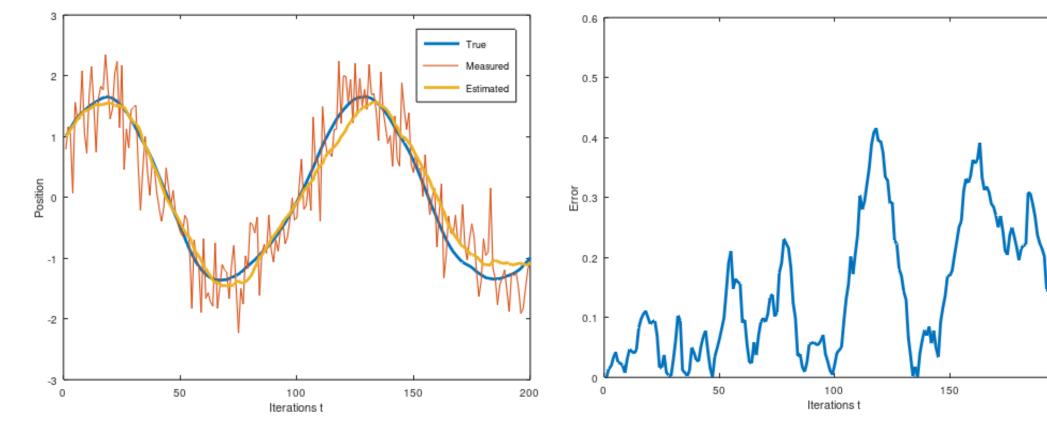
Consider the stochastic oscillator
$$x^{(\alpha)}(t) = \begin{bmatrix} 0 & 1 \\ -0.64 & -0.25 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + v(t)$$
 where $Q = 3$, $R = 2$, and $P(0) = \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Here, we use $n = 200$ iterations.

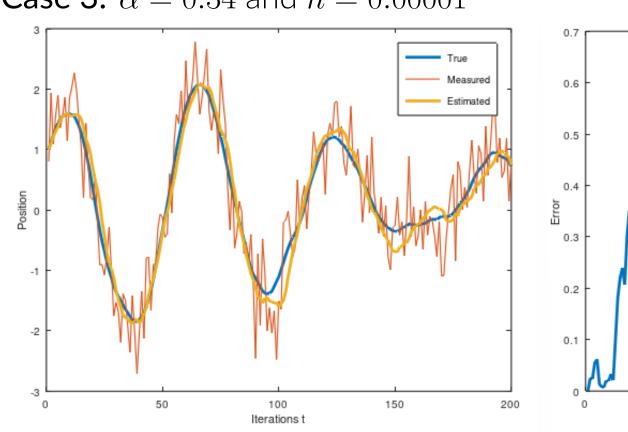


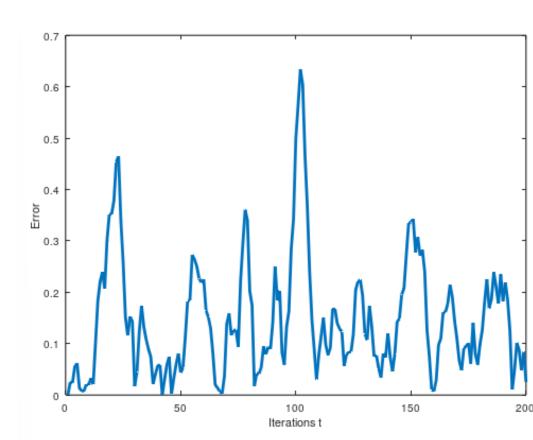


Case 2: $\alpha = 0.67$ and h = 0.01



Case 3: $\alpha = 0.34$ and h = 0.00001





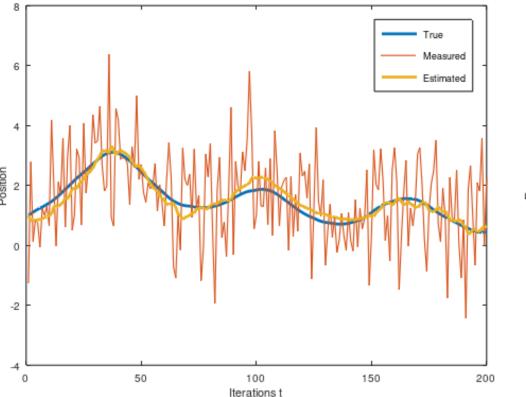
Linear Time Variant (LTV)

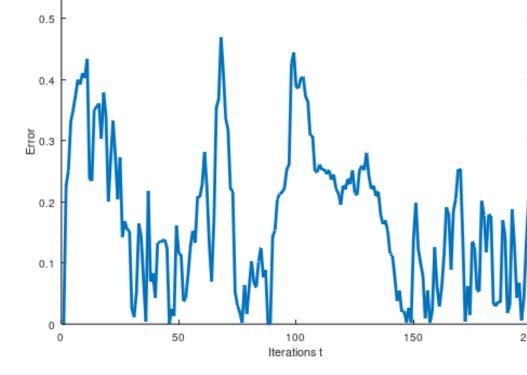
Consider the stochastic system

$$x^{(\alpha)}(t) = \begin{bmatrix} 0 & 0.5 \\ \sin(0.1t) & -1 \end{bmatrix} x(t) + \begin{bmatrix} 0 \\ 1 \end{bmatrix} w(t), \quad x(0) = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$y(t) = \begin{bmatrix} 1 & 0 \end{bmatrix} x(t) + v(t)$$

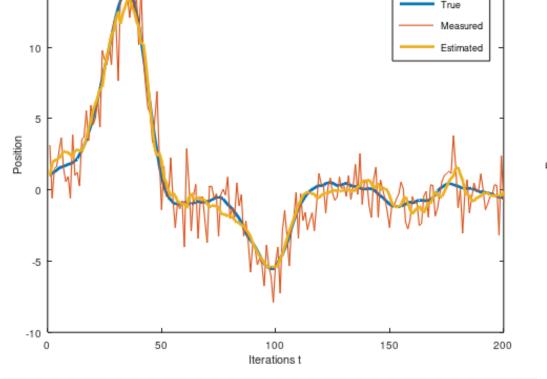
where
$$Q=3$$
, $R=2$, and $P(0)=\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$. Here, we use $n=200$ iterations.

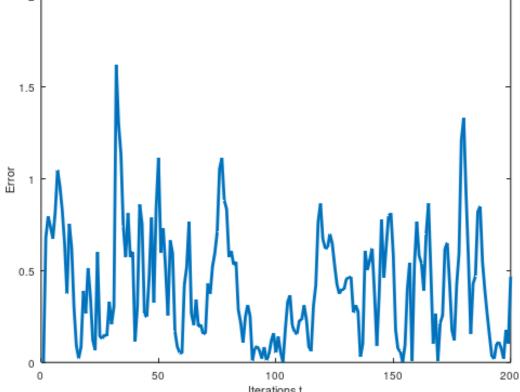
Case 1: $\alpha = 1$ and h = 0.1

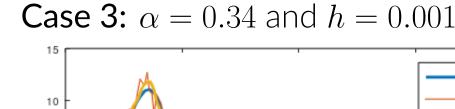


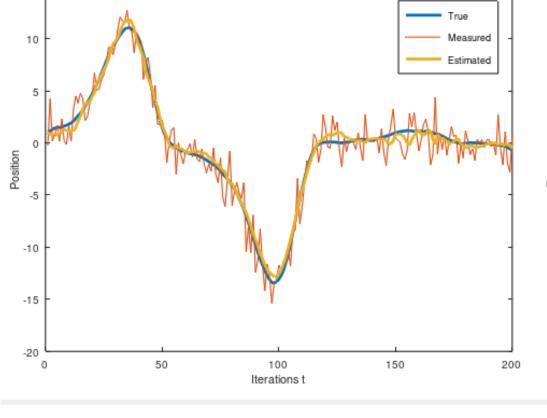


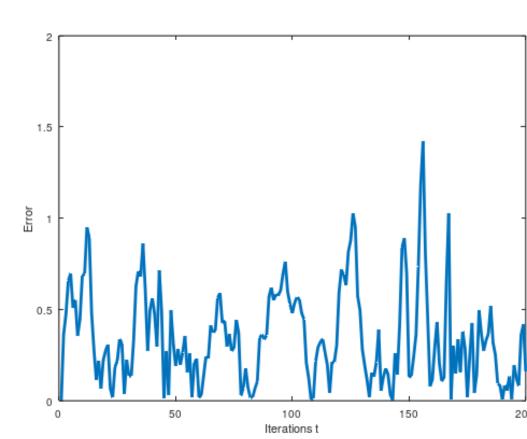
Case 2: $\alpha = 0.67$ and h = 0.1











Future Plans

Related work includes:

- Steady-state results
- Stability results through exponential weighting based on α
- Gain scheduling based on α
- Filter design with correlated noise
- Conformable information filter and corresponding smoother
- An extended conformable Kalman filter

References

[1] F.L. Lewis, L. Xie, and D. Popa.

Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory.

CRC Press, 2008.

[2] R. Khalil, M. Al Horani, A. Yousef, and M. Sababheh. A new definition of fractional derivative.

Journal of Computational and Applied Mathematics, 264:65–70, July 2014. [3] A. Younus, T. Abdeljawad, and T. Gul.

On stability criteria of fractal differential systems of conformable type.

Fractals, 28(08):2040009, July 2020.

[4] T. Cuchta, D. Poulsen, and N. Wintz.

Linear quadratic tracking with continuous conformable derivatives. European Journal of Control, 72:100808, July 2023.