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Introduction

This short paper discusses the Lagrange Interpolation, Newton’s Divided Differences, and Cubic Spline In-
terpolation techniques to analyze a Torque curve and Horse Power curve recorded by a Road to Indy car.
We will go over each of the techniques, and then analyze key properties of the curves as they pertain to the
car itself. Below is a graph of the Road to Indy engine recording.
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Research Methods

Torque Y-axis Axis Analysis using Power Equation

The provided plot lacked y-axis axis units for the torque data. To find the values corresponding to the
major axes ticks on this axis, the spacing between grid lines first needed to be identified. First, each RPM
value where the torque curve crossed a major or minor grid line was collected. These values were kept in
order corresponding to what grid line they were associated with. The HP value for each of these RPMs was
collected. Then, using the equation

T =

(
5252

RPM

)
·HP

the expected torque value at each RPM was calculated. The following table outlines the collected data points
with torque calculations and the following figure shows what torque value each grid line is associated with.

Grid Line ID RPM Value Plotted Power [HP] Calculated Torque [ft.lb]
3 6616.237942 156.7757009 124.4492699
3.5 6425.241158 156.5514019 127.9653078
4 6235.691318 155.3551402 130.8475924
4.5 5985.369775 152.8130841 134.0893458
5 5777.009646 150.7196262 137.0223567
5.5 5580.948553 148.7757009 140.0066626
6 5293.729904 144.0654206 142.9297683

Grid line spacing could then be calculated by computing the difference in torque value between each data
point. The resulting spacing values are summarized in the table below. Due to the limited resolution of
original plot, there is some uncertainty when it comes to selecting an exact data point. In theory, all the grid
lines should be equally spaced, but based on the calculated differences, the spacing varies. Since a uniform
grid scaling is desired, the average grid line spacing of 6.1595194 was used.
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The values of the grid lines were then calculated. By averaging the collected torque values, the theoretical
torque value that lies on the minor tick between G4 and G5 can be calculated. Adding half of the grid
spacing to this value results in finding that grid line G5 corresponds to a torque value of 136.7822127 ft*lb.
This averaging method was used for the same reason described above. The torque values corresponding to
all other grid lines could then be derived by adding multiples of the grid line spacing to G5. The resulting
torque y-axis values are summarized in the table below.

Initial Grid Line ID Final Grid Line ID Absolute Difference in Torque [ft.lb]

3 3.5 2.923105698
3.5 4 2.984305907
4 4.5 2.933010894
4.5 5 3.241753395
5 5.5 2.882284618
5.5 6 3.516037942

Grid Line ID Torque [ft.lb]
G0 106.181
G1 112.341
G2 118.501
G3 124.661
G4 130.821
G5 136.982
G6 143.142
G7 149.302
G8 155.462

Torque Y-axis Axis Analysis using Reported Values

While the method discussed in the previous section yielded promising results, it did not yield values accurate
to the reported torque from the given information. The reason for why these calculated values do not agree
with the provided data is unclear. This section focuses on a modified method to find the y-axis values based
on the provided data.
Based on the reported data, the maximum torque value should be 134.7 ft*lb and the minimum should be
116 ft*lb. Using WebPlotDigitizer, the y-axis was defined by selecting the max of the torque curve and
setting it to the given max torque and then doing the same for the minimum torque. The torque values of
the major grid lines could then be extracted.

Grid Line ID RPM Value Torque [ft.lb]

3 6623.167421 116.595
4 6232.217195 122.29
5 5780.452489 128.07
6 5293.936652 133.765

The spacing between these grid lines was then calculated. These differences were averaged and the grid
spacing was found to be 5.723 ft*lb.
By averaging the collected major axis values, the value of the G4.5 minor axis was found. Subtracting half
of the major grid spacing yields the the value of the G4 major grid line. By adding integer multiples of the
grid spacing to this value, the value of all other grid lines could be determined.
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Initial Grid Line ID Final Grid Line ID Absolute Difference in Torque [ft.lb]

3 4 5.695
4 5 5.78
5 6 5.695

Grid Line ID Torque [ft.lb]

G0 99.425
G1 105.148
G2 110.872
G3 116.595
G4 122.318
G5 128.042
G6 133.765
G7 139.488
G8 145.212

Data Point Capturing Method

All data points were collected using WebPlotDigitizer. This process was done by uploading the original
plot into the software and then selecting known X and Y axis values. Any point in the plot could then be
captured. Data points were selected approximately 100 RPM apart, and extra data points were collected
near the end of the plots to estimate the derivatives.

Image Generation and Modification

All plots were generated using MATLAB and images were modified using Microsoft PowerPoint. To create
superimposed plots, the original image plot was provided in PowerPoint along with the generated plot. The
generated plot was turned to 50% opacity and then the grid lines of each plot were aligned. This process
requires that the generated plots use the same x and y axis scaling as the original plot.
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Lagrange Interpolation

Lagrange Interpolation interpolates a dataset at O(nlogn) as shown in Stoss’s analysis of Lagrange Interpo-
lation (Stoss, 1985). Thus, it is computationally viable to use while being more simple to implement than
the following techniques. The biggest drawback to Lagrange’s technique is it’s risk of exponential decay or
growth at the ends of the interpolating interval. The reader will notice, as a consequence, that our interpo-
lation points are clustered towards the ends of the interpolating interval, but this issue cannot be entirely
avoided when using Lagrange Interpolation.

Regardless, we start off with the expression

f(x) ≈ p(x) =

n∑
k=0

f(xk)

n∏
i=0,i̸=k

(x− xi)

(xk − xi)

of a Lagrange Interpolation to interpolate the torque and horsepower nodes displayed below. We have also
included the interpolation horsepower and torque equations and the graph of our interpolating polynomials.

n= Torque Nodes HP Nodes

0 (5034.751131, 134.7000) (5036.665168, 139.4029851)
1 (5060.81448, 134.7000) (5069.950548, 140.2985075)
2 (5199.819005, 134.2750) (5201.578853, 142.0149254)
3 (5398.190045, 132.9150) (5399.794102, 145.9701493)
4 (5598.00905, 130.7050) (5597.971588, 148.8805970)
5 (5798.552036, 127.9000) (5799.008272, 150.8955224)
6 (5909.321267, 126.2000) (5900.253552, 152.0149254)
7 (6099.728507, 123.9050) (6099.844452, 154.0298507)
8 (6299.547511, 121.6100) (6309.550441, 155.8955224)
9 (6501.538462, 118.2100) (6500.418090, 156.5671642)
10 (6636.199095, 116.4250) (6642.104837, 156.5671642)
11 (6678.914027, 116.0000) (6660.905413, 156.7164179)

HP (x) = (−2.6508836 · 10−31)x11 + (1.6916764 · 10−26)x10 − (4.8994321 · 10−22)x9

+ (8.5004015 · 10−18)x8 − (9.8162341 · 10−14)x7 + (7.9220943 · 10−10)x6 − (0.0000045591799)x5

+ (0.018709948)x4 − (53.655047)x3 + (102399.46)x2 − (117047430.0)x+ 6.0703551 · 106

Tcalculated(x) = (4.0544021 · 10−31)x11 − (2.6209116 · 10−26)x10 + (7.6922626 · 10−22)x9 − (1.3530213 · 10−17)x8

+ (1.5847485 · 10−13)x7 − (1.297806 · 10−9)x6 + (0.0000075827411)x5 − (0.031608902)x4 + (92.126658)x3

− (178798.89)x2 + 207965270.0x− 1.0982216 · 1011

Tactual(x) = (3.6481638 · 10−31)x11 − (2.3576062 · 10−26)x10 + (6.9173254 · 10−22)x9 − (1.2163213 · 10−17)x8

+ (1.4241594 · 10−13)x7 − (1.1658913 · 10−9)x6 + (0.0000068095855)x5 − (0.028375705)x4 + (82.672794)x3

− (160390.99)x2 + 186484270.0x− 9.8441125 · 1010
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Netwon’s Divided Differences Interpolation

In general, it has been shown that Newton’s Divided Differences generates a computationally, in floating-
point arithmetic, more accurate polynomial than the Lagrange Interpolating Polynomial (Srivastava and
Kumar Srivastava, 2012) even though their techniques generate, in theory, the same polynomial. Hence, we
find it important to note the Netwon’s Divided Differences formula is

f(x) ≈ P (x) = f [x0] +

n∑
k=1

f [x0, . . . , xk](x− x0) . . . (x− xk−1) =

n∑
k=1

f [x0, . . . , xk]

k−1∏
i=0

(x− xi)

where f [x0] = f(x0), f [x0, x1] =
f [x1]−f [x0]

x1−x0
, and f [x0, . . . , xk] =

f [x1,··· ,xk]−f [x0,...,xk−1]
xk−x0

. We complete this
section by showing an example of the horsepower divided differences for the first five terms using the data
points outlined in the previous section.

Example (Newton’s Divided Difference Applied to Horsepower Curve).

x0 f [x0] = 139.402985
f [x0, x1] ≈ 0.026904

x1 f [x1] = 140.298507 f [x0, x1, x2] ≈ −8.40742 · 10−5

f [x1, x2] ≈ 0.013039 [x0, x1, x2, x3] ≈ 4.331480 · 10−7

x2 f [x2] = 142.014925 f [x1, x2, x3] ≈ 4.722541 · 10−5

f [x2, x3] ≈ 0.028616 [x1, x2, x3, x4] ≈ −1.559925 · 10−7

x3 f [x3] = 145.970149 f [x2, x3, x4] ≈ −3.514190 · 10−5

f [x3, x4] ≈ 0.014686
x4 f [x4] = 148.88059

where the last entry is f [x0, x1, x2, x3, x4] ≈ −1.04958 · 10−9. Therefore, we construct our polynomial as

HP (x) ≈ 139.402985 + 0.026904(x− 5036.665168)− (8.0472 · 10−5)(x− 5036.665168)(x− 5069.950548)

+ (4.331480 · 10−7)(x− 5036.665168)(x− 5069.950548)(x− 5201.578853)

− (1.04958 · 10−9)(x− 5036.665168)(x− 5069.950548)(x− 5201.578853)(x− 5399.794102) + . . .
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Cubic Splines Interpolation

The Cubic Splines Interpolation method has an O(n) time complexity (Revesz, 2014), so it is worthwhile
to construct a splines interpolation of our horsepower and torque curve. We also know that Runge’s Phe-
nomenon is mitigated by piecewise polynomials since their functions are defined on intervals and a splined
together: rather than constructing an algebraic interpolation.

In lieu of the Cubic Splines method, we utilize the boundary conditions f ′(x0) = S′(x0) = f(x21)−f(x0)
x21−x0

and f ′(xn) = S′(xn) =
f(x21)−f(x0)

x21−x0
(referred to as clamped splines) to interpolate our curve. This specific

boundary condition is founded on our assumption that the Road to Indy engine is already generating horse-
power before the recording of its horsepower curve (and consequentially reducing torque before the recording
of its torque curve). Note that for the beginning of our Torque curve, we assume T ′(x0) = 0 because our
interpretation of the graph appears to begin with a horizontal tangent.

We also assume the end of the horsepower curve and torque curve has a linear derivative since the sys-
tem could still increase horsepower production (and thus decrease torque) in its testing run. Thus, with our
assumptions, nodes, and clamped boundary conditions we generate the following table to represent the splines
of the torque and horsepower curve where each spline is of the form Si = ai+bi(x−xi)+ci(x−xi)

2+di(x−xi)
3.

The xi notation denotes the RPM of the ith element of the nodes table.

n= TORQUE NODES HP NODES

0 (5034.751131, 134.7000) (5036.665168, 139.4029851)
1 (5060.81448, 134.7000) (5049.690703, 139.7761194)
2 (5077.466063, 134.6575) (5069.950548, 140.2985075)
3 (5099.909502, 134.6150) (5100.325481, 140.6716418)
4 (5199.819005, 134.2750) (5201.578853, 142.0149254)
5 (5301.176471, 133.6800) (5299.967632, 144.1044776)
6 (5398.190045, 132.9150) (5399.794102, 145.9701493)
7 (5499.547511, 131.8950) (5499.612480, 147.6119403)
8 (5598.00905, 130.7050) (5597.971588, 148.8805970)
9 (5700.81448, 129.1750) (5700.662651, 150.0000000)
10 (5798.552036, 127.9000) (5799.008272, 150.8955224)
11 (5909.321267, 126.2000) (5900.253552, 152.0149254)
12 (5999.095023, 125.0525) (6000.044956, 152.9104478)
13 (6099.728507, 123.9050) (6099.844452, 154.0298507)
14 (6200.361991, 122.7575) (6201.087035, 155.0746269)
15 (6299.547511, 121.6100) (6309.550441, 155.8955224)
16 (6400.180995, 119.9100) (6400.653659, 156.4179104)
17 (6501.538462, 118.2100) (6500.418090, 156.5671642)
18 (6601.447964, 116.8075) (6600.177126, 156.5671642)
19 (6636.199095, 116.4250) (6642.104837, 156.5671642)
20 (6665.158371, 116.1700) (6678.256159, 156.7537313)
21 (6678.914027, 116.0000) (6660.905413, 156.7164179)
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HP (X) ≈



−0.000014526143x3 + 0.28984279x2 − 1927.7485x+ 4273954.3 if x ∈ (6642.1048, 6678.2562)
0.0000035999315x3 − 0.071343074x2 + 471.28585x− 1037591.6 if x ∈ (6600.1771, 6642.1048)

−0.00000025418186x3 + 0.0049704175x2 − 32.396711x+ 70539.741 if x ∈ (6500.4181, 6600.1771)
0.00000016784102x3 − 0.003259558x2 + 21.101571x− 45380.659 if x ∈ (6400.6537, 6500.4181)

−0.00000013166419x3 + 0.0024915295x2 − 15.709148x+ 33156.896 if x ∈ (6309.5504, 6400.6537)
0.000000051229027x3 − 0.00097039252x2 + 6.1340231x− 12783.301 if x ∈ (6201.087, 6309.5504)
−0.000000028084257x3 + 0.0005050932x2 − 3.0155923x+ 6129.2193 if x ∈ (6099.8445, 6201.087)
−0.00000011718991x3 + 0.002135685x2 − 12.961949x+ 26352.961 if x ∈ (6000.045, 6099.8445)
0.00000018373149x3 − 0.0032809408x2 + 19.538049x− 38647.522 if x ∈ (5900.2536, 6000.045)
−0.00000018227827x3 + 0.0031977105x2 − 18.687636x+ 36532.89 if x ∈ (5799.0083, 5900.2536)
0.0000001542976x3 − 0.0026577084x2 + 15.267987x− 29103.422 if x ∈ (5700.6627, 5799.0083)

−0.000000048833278x3 + 0.00081623352x2 − 4.535784x+ 8528.1167 if x ∈ (5597.9716, 5700.6627)
0.00000007285293x3 − 0.0012273543x2 + 6.9041625x− 12818.715 if x ∈ (5499.6125, 5597.9716)
−0.000000077532604x3 + 0.0012538322x2 − 6.7414016x+ 12196.39 if x ∈ (5399.7941, 5499.6125)
0.00000010436126x3 − 0.0016927361x2 + 9.1694604x− 16442.07 if x ∈ (5299.9676, 5399.7941)

−0.00000031323879x3 + 0.0049470641x2 − 26.021266x+ 45727.833 if x ∈ (5201.5789, 5299.9676)
0.000000076717931x3 − 0.0011381077x2 + 5.6312354x− 9153.1601 if x ∈ (5100.3255, 5201.5789)
0.0000048883544x3 − 0.074760844x2 + 381.13115x− 647543.76 if x ∈ (5069.9505, 5100.3255)
−0.0000066625311x3 + 0.10092641x2 − 509.59454x+ 857767.98 if x ∈ (5049.6907, 5069.9505)

−0.00000018245633x3 + 0.0027592909x2 − 13.880948x+ 23367.873 if x ∈ (5036.6652, 5049.6907)

Tcalc(x) ≈



0.0000042205465x3 − 0.084634491x2 + 565.70917x− 1260269.5 if x ∈ (6663.9871, 6678.4566)
−0.0000057339015x3 + 0.11437445x2 − 760.48385x+ 1685641.5 if x ∈ (6637.9421, 6663.9871)
0.0000017177936x3 − 0.034017313x2 + 224.53208x− 493851.38 if x ∈ (6598.8746, 6637.9421)

−0.00000012590204x3 + 0.0024816363x2 − 16.319914x+ 35932.64 if x ∈ (6499.7588, 6598.8746)
0.000000094780396x3 − 0.0018215115x2 + 11.649509x− 24665.527 if x ∈ (6399.9196, 6499.7588)
0.00000011714352x3 − 0.002250878x2 + 14.397421x− 30527.665 if x ∈ (6299.3569, 6399.9196)

−0.00000013077337x3 + 0.0024342729x2 − 15.116018x+ 31444.229 if x ∈ (6199.5177, 6299.3569)
0.000000020300387x3 − 0.00037548043x2 + 2.303098x− 4552.4763 if x ∈ (6098.2315, 6199.5177)
−0.000000078843387x3 + 0.0014383246x2 − 8.7579051x+ 17931.71 if x ∈ (5998.3923, 6098.2315)
0.000000012587312x3 − 0.00020698697x2 + 1.1113193x− 1801.4501 if x ∈ (5897.1061, 5998.3923)
0.00000015804603x3 − 0.0027803435x2 + 16.286676x− 31631.679 if x ∈ (5797.9904, 5897.1061)
−0.00000020342643x3 + 0.003507098x2 − 20.167849x+ 38822.649 if x ∈ (5696.7042, 5797.9904)
0.00000021157134x3 − 0.0035852605x2 + 20.235219x− 37898.793 if x ∈ (5596.1415, 5696.7042)
−0.00000013390304x3 + 0.0022147101x2 − 12.222237x+ 22646.711 if x ∈ (5495.5788, 5596.1415)
0.00000011376561x3 − 0.0018685377x2 + 10.217573x− 18459.869 if x ∈ (5397.91, 5495.5788)

−0.000000061548224x3 + 0.00097044713x2 − 5.1070117x+ 9113.7064 if x ∈ (5298.0707, 5397.91)
9.6478495e− 9x3 − 0.00016115837x2 + 0.88831431x− 1474.1806 if x ∈ (5198.955, 5298.0707)
0.000000078369153x3 − 0.0012329953x2 + 6.460746x− 11131.121 if x ∈ (5099.1158, 5198.955)
−0.00000047756718x3 + 0.0072713559x2 − 36.903925x+ 62576.038 if x ∈ (5068.0064, 5099.1158)
0.00000019505776x3 − 0.0029552467x2 + 14.924563x− 24979.665 if x ∈ (5043.4084, 5068.0064)
−0.00000019641705x3 + 0.0029678553x2 − 14.948059x+ 25240.279 if x ∈ (5033.2797, 5043.4084)
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Tactual(x) =



0.0000092929584x3 − 0.18600395x2 + 1240.9795x− 2759707.3 if x ∈ (6665.1584, 6678.914)
−0.0000031824544x3 + 0.063447858x2 − 421.65632x+ 934202.93 if x ∈ (6636.1991, 6665.1584)
0.00000069695147x3 − 0.013785671x2 + 90.880755x− 199563.09 if x ∈ (6601.448, 6636.1991)
9.9618786e− 9x3 − 0.00018029286x2 + 1.0655592x− 1926.3084 if x ∈ (6501.5385, 6601.448)

0.000000017961099x3 − 0.00033631457x2 + 2.0799404x− 4124.6544 if x ∈ (6400.181, 6501.5385)
0.00000017680584x3 − 0.0033862199x2 + 21.599886x− 45768.383 if x ∈ (6299.5475, 6400.181)
−0.0000001873898x3 + 0.0034965834x2 − 21.75866x+ 45278.024 if x ∈ (6200.362, 6299.5475)

0.000000050054164x3 − 0.00092013223x2 + 5.6265758x− 11321.434 if x ∈ (6099.7285, 6200.362)
−0.000000033055322x3 + 0.00060070368x2 − 3.6501103x+ 7540.3213 if x ∈ (5999.095, 6099.7285)
−0.000000075715103x3 + 0.0013684639x2 − 8.2559769x+ 16750.665 if x ∈ (5909.3213, 5999.095)
0.00000016925906x3 − 0.0029744292x2 + 17.407573x− 33800.723 if x ∈ (5798.552, 5909.3213)
−0.00000019766086x3 + 0.0034083835x2 − 19.603498x+ 37736.151 if x ∈ (5700.8145, 5798.552)
0.0000001768956x3 − 0.0029974471x2 + 16.914954x− 31658.822 if x ∈ (5598.009, 5700.8145)

−0.000000072116639x3 + 0.0011844712x2 − 6.4954625x+ 12025.086 if x ∈ (5499.5475, 5598.009)
0.000000024653721x3 − 0.00041210838x2 + 2.2850027x− 4071.1091 if x ∈ (5398.19, 5499.5475)

−0.000000012567863x3 + 0.00019067917x2 − 0.96895903x+ 1784.0589 if x ∈ (5301.1765, 5398.19)
7.1089745e− 9x3 − 0.00012225199x2 + 0.68994428x− 1147.3209 if x ∈ (5199.819, 5301.1765)

0.000000025516933x3 − 0.00040940615x2 + 2.1830939x− 3735.3568 if x ∈ (5099.9095, 5199.819)
−0.000001113855x3 + 0.017022676x2 − 86.718946x+ 147395.43 if x ∈ (5077.4661, 5099.9095)
0.0000034957987x3 − 0.053193405x2 + 269.80082x− 456010.24 if x ∈ (5060.8145, 5077.4661)
−0.0000022759843x3 + 0.034436364x2 − 173.67718x+ 292109.72 if x ∈ (5034.7511, 5060.8145)

Lastly, the graph of our interpolation (with calculated torque) is shown below.
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Horse Power and Torque Analysis

We divide this section into two subsections. The first subsection entails an analysis of the Lagrange/Netwon’s
Interpolating Polynomial, generated in previous sections, with the utilization of the Bisection Method and
Secant Method for approximating its roots. The second subsection entails our piece-wise cubic spline poly-
nomial with the same root-finding algorithms as with the Lagrange polynomial.

Lagrange/Newton’s Interpolation Analysis

Before we delve into the root-finding methodologies themselves, note the T ′(x0) ≈ 0.002285 and
T ′(x21) ≈ −0.008668 which implies by the Intermediate Value Theorem that a root of T’s derivative exists
on the interpolating interval. Thus, it appears that it’s best for us to utilize the Bisection Method when
analyzing min-max extrema on our interval, provided we can reduce our interval into subsets of the ambient
interval to find all roots. For the Horse Power we have HP ′(x0) ≈ 0.035474... and HP ′(x21) ≈ 0.009432...
so we can’t make a conclusion. Thus, we hypothesize the secant method works more efficiency for our Horse
Power curve. Below is a collection of our results from the Bisection Method and Secant Method with an
error bound of ϵ = 10−20 to find accurate roots, regardless of whether they fulfill the ϵ-bounds or not. The
code reference is attached as supplementary material.

Table 1: Bisection Method with Lagrange Interpolation
Property (RPM, HP) Derivative

Minimum Torque (6678.914027, 116.000000) 7.358108 · 10−17

Maximum Torque (5046.814473, 134.712895) 3.532954 · 10−11

Minimum Horsepower (5036.66518, 139.402985) 1.2784495 · 10−11

Maximum Horsepower (6646.777428, 156.5957501) 1.2784495 · 10−11

Table 2: Secant Method with Lagrange Interpolation
Property (RPM, T) Derivative

Minimum Torque (6678.914027, 116.000000) 7.358108 · 10−17

Maximum Torque (5046.814473, 134.712895) 3.532954 · 10−11

Minimum Horsepower (5036.66518, 139.402985) 0.03547469
Maximum Horsepower (6589.8296614, 156.41455667) −3.153830 · 10−17

We use the two tables to estimate the minimum and maximum for the Torque and Horsepower curves. We
have also included the calculated average of our curves, found via MATLAB, as shown below.

Table 3: Summary of Lagrange Interpolation Extrema, Range, and Average
Property Value Derivative

Minimum Torque (6678.914027, 116.000000) 7.358108 · 10−17

Maximum Torque (5046.814473, 134.712895) 3.532954 · 10−11

Minimum Horsepower (5036.66518, 139.402985) 1.2784495 · 10−11

Maximum Horsepower (6589.8296614, 156.41455667) −3.153830 · 10−17

Torque Range 18.712895 n/a
Horsepower Range 17.011571 n/a
Average Torque 135.739811 n/a

Average Horsepower 150.527616 n/a
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Cubic Splines Interpolation Analysis

Via the condition for our Cubic Splines for our Torque curve, we know T ′(x0) = 0 which implies x0 yields an
minimum or maximum. Consequentially, x0 is a maximum since the rest of the torque curve is a decreasing
function. We also have for HP that HP ′(x0) = 0.028646 and HP ′(x21) = 0.005197 so no conclusion can
be made about the horse power curve. Below is a collection of our results from the Bisection Method and
Secant Method with an error bound of ϵ = 10−20 to find accurate roots, regardless of whether they fulfill
the ϵ-bounds or not. The code reference is attached as supplementary material.

Table 4: Bisection Method with Cubic Interpolation
Property (RPM, HP) Derivative

Minimum Torque (6678.914027, 116.000000) −0.008668
Maximum Torque (5034.751131, 134.700000) 0

Minimum Horsepower (5036.665168, 139.4029851) 0.03547469
Maximum Horsepower (6560.891246, 156.443354) −0.0017627028

Table 5: Secant Method with Cubic Interpolation
Property (RPM, T) Derivative

Minimum Torque (6678.914027, 116.000000) −0.008668
Maximum Torque (5034.751131, 134.700000) 0

Minimum Horsepower (5036.665168, 139.4029851) 0.03547469
Maximum Horsepower (6560.891246, 156.443354) −0.0017627028

We use the two tables to estimate the minimum and maximum for the Torque and Horsepower curves to be
as shown below.

Table 6: Summary of Cubic Interpolation Extrema, Range, and Average
Property Value Derivative

Minimum Torque (6678.914027, 116.000000) −0.008668
Maximum Torque (5034.751131, 134.700000) 0.002983155

Minimum Horsepower (5036.665168, 139.4029851) 0.03547469
Maximum Horsepower (6560.891246, 156.443354) −0.0017627028

Torque Range 18.700000 n/a
Horsepower Range 17.040369 n/a
Average Torque 135.72161 n/a

Average Horsepower 150.542927 n/a
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Conclusion

Below are the resulting outputs of the interpolation outputs. Lagrange and Divided differences are put
together as the both result in the same polynomial.

Lagrange/Divided Differences

Average Power = 150.5276 HP
Average Torque (Equation Method) = 135.7398 ft*lb
Average Torque (Data Method) = 126.7586 ft*lb
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Clamped Cubic Splines

Average Power = 150.5429 HP
Average Torque (Equation Method) = 135.7216 ft*lb
Average Torque (Data Method) = 126.7412 ft*lb

MATH455 | Numerical Analysis I 13


